Skip to content

Data Science Overview

Flow-Like brings powerful data science capabilities to a visual, no-code environment. Whether you’re exploring datasets, building ML models, or creating dashboards—you can do it all without writing code.

Application TypeDescription
Data PipelinesLoad, transform, and analyze data from multiple sources
Interactive DashboardsCharts and visualizations with Nivo and Plotly
ML WorkflowsTrain and deploy classification, regression, and clustering models
Federated AnalyticsQuery across PostgreSQL, MySQL, Parquet, Delta Lake, and more
AI-Powered AnalysisCombine traditional ML with GenAI agents

Import data from CSVs, Excel files, databases, cloud storage, and APIs. Flow-Like’s storage system keeps your data organized and accessible.

👉 Learn about Data Loading & Storage

Use SQL to query data from any source—local files, databases, or cloud data lakes. DataFusion unifies your data under a single query interface.

👉 Learn about DataFusion & SQL

Train and deploy ML models for classification, regression, clustering, and dimensionality reduction using the linfa ML library.

👉 Learn about Machine Learning

Create beautiful charts and dashboards using Nivo (17 chart types) and Plotly (scientific visualizations) directly in your A2UI interfaces.

👉 Learn about Data Visualization

Leverage AI agents for data analysis—natural language queries, automated insights, and intelligent data processing.

👉 Learn about AI-Powered Analysis

A typical data science workflow in Flow-Like:

┌──────────────────────────────────────────────────────────────────┐
│ │
│ 1. LOAD DATA │
│ CSV, Excel, Parquet, APIs, Databases │
│ │ │
│ ▼ │
│ 2. EXPLORE & TRANSFORM │
│ DataFusion SQL, filtering, aggregation │
│ │ │
│ ▼ │
│ 3. ANALYZE │
│ ├── Traditional ML (classification, clustering) │
│ └── GenAI Agents (natural language analysis) │
│ │ │
│ ▼ │
│ 4. VISUALIZE │
│ Charts, dashboards, reports │
│ │ │
│ ▼ │
│ 5. DEPLOY │
│ Scheduled runs, APIs, Chat interfaces │
│ │
└──────────────────────────────────────────────────────────────────┘

Here’s what a sales analysis workflow might look like:

Read CSV ──▶ Mount to DataFusion ──▶ SQL Query ──▶ Bar Chart
│ │ │ │
│ │ │ │
│ "sales_data" "SELECT region, │
│ SUM(revenue) │
│ GROUP BY region" │
│ │
└─────────────────────────────────────────────────┘
  1. Read CSV – Load your sales data file
  2. Mount to DataFusion – Register as a SQL-queryable table
  3. SQL Query – Aggregate by region
  4. Bar Chart – Visualize results in A2UI
FormatSupport
CSV✅ Full (streaming, chunked reads)
Excel (.xlsx)✅ Full (sheets, cells, tables)
Parquet✅ Full (columnar, efficient)
JSON / NDJSON✅ Full (with schema)
DatabaseQueryWrite
PostgreSQL
MySQL
SQLite
DuckDB
ClickHouse
Oracle
FormatFeatures
Delta LakeRead, write, time travel
Apache IcebergRead, snapshots
Hive PartitionedParquet, JSON
ProviderSupport
AWS S3✅ Full
Azure Blob✅ Full
Google Cloud Storage✅ Full
AWS Athena✅ Query
CategoryAlgorithms
ClassificationDecision Trees, Naive Bayes, SVM
RegressionLinear Regression
ClusteringK-Means, DBSCAN
Dimensionality ReductionPCA
Deep LearningONNX Runtime (YOLO, TIMM, custom models)
LibraryChart Types
NivoBar, Line, Pie, Radar, Heatmap, Scatter, Funnel, Treemap, Sunburst, Calendar, Sankey, Stream, Waffle, Chord + more
PlotlyBar, Line, Scatter, Pie, Area, Histogram, Heatmap, Box, Violin

Before starting with data science in Flow-Like:

  1. Flow-Like Desktop installed (Download)
  2. Data files or database connections ready
  3. For ML: understanding of basic ML concepts
  4. For AI analysis: API keys for LLM providers

Choose your starting point: